
NATIONAL AERONAUTICS AND SPACE ADMINIJTIIATION 

U 

I ITWRUJ 
P 

N65-83555 
c 
L , 
0 

+AGES3 (CODE) 

,NASA C R  O R  T M X  O R  AD N U H B E R I  ICATEGORYI ,' 

WINGS O F  *MINIMUM DRAG 

B y  Y. L. Zhilin 

-\ 



cc 
CD 
N 
I 

' W  

NATIONAL AERONAUTICS ARD SPACE AIIMINIs!PRAmOB 

W I N G S  OF MINIMUM DRAG 

By Y. L. Zhilin 

ABSTRACT 

The var ia t iona l  problem of minimum drag f o r  a given lift i s  con- 
sidered for an a rb i t r a ry  f ixed planform with supersonic edges, subject 
t o  the r e s t r i c t ions  of l inear  theory. 
po ten t ia l  on the trailing-edge character is t ic  surface satisfies Laplace's 
equation with mixed boundary conditions. 
minimum-drag wings  of quadri la teral  planform indicate  that only slight 
drag reductions from plane-wing values are obtained f o r  cases where the  
theory i s  fe l t  t o  be most valid.  Some consideration is  a l so  given the  
minimum drag problem for a body with a f ixed- t ip  cross section. 

It i s  shown that the  veloci ty  
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

I s  
WINGS OF MINIMUM DRAG* 

By Y. L. Zhilln 

The variat ional  problem i s  considered f o r  a wing  of a rb i t ra ry  
f ixed  planform f o r  a given l i f t .  The wing i s  assumed t o  have super- 
sonic edges and t o  have a slight disturbing ef fec t  on the free stream. 
It i s  shown that the potent ia l  of the disturbed velocity of the wing 
of miniam drag on the trailing-edge character is t ic  surface s a t i s f i e s  
the Laplace equation with mixed boundary conditions. This result was 
e a r l i e r  obtained by M. N. Kogan (ref. 1) f o r  a wing having a s t ra ight  
t r a i l i n g  edge perpendicular t o  the undisturbed flow. The computation 
of the drag of wings of minimuin drag  of quadrilateral  planform has 
shown that the drag of these wings differs s l igh t ly  from the drag of 
plane wings. There i s  considered also the problem of the minimum drag 
of a body having a fixed-tip cross section, and a lower l i m i t  i s  ob- 
tained f o r  the drag of such a body. 

1. Consider the supersonic gas flow around an arb i t ra ry  body. The 
forces acting on the body can be represented i n  the  form of integrals  
over an a rb i t ra ry  closed surface enclosing the body. If the body has a 
small disturbing ef fec t  on the free stream, then 

> 

*“Kryi3a rninimalnogo soprotivleniya. ’’ Prikladnaya 
mekhanika, vo l .  XXI, 1957, pp. 213-220. 
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where X, Y, and Z a re  the components of the force act ing on the  body, 
Urn and poo the velocity and density of the f r e e  stream, u, v, and w 
the components of the disturbed flow, M, 
and n the outer normal t o  the surface Si. 

i s  the free-stream Mach number, 

Moreover, on the surface S1 the equation of conservation of mass 
must be observed: 

where 
leading cross sections of the body on the plane 

i s  the  difference of the projected areas of the t r a i l i n g  and 
x = constant. 

These formulas can be considerably simplified i f  f o r  the surface 
there i s  taken the surface formed by the forward and a f t  character- SI 

i s t i c  surfaces of the body n l  and n2, shown i n  f igure 1. This method 
had been previously employed i n  considering the var ia t ional  problem by 
A.  A .  N i k o l s k i  ( r e f .  2 )  f o r  bodies of revolution and by M. N. Kogan 
(ref. 1) f o r  a w i n g  w i t h  a s t ra ight  t r a i l i n g  edge perpendicular t o  the 
undisturbed flow. 

On the leading character is t ic  surface the disturbed velocity i s  
equal t o  zero.  
conducted only along the t r a i l i n g  character is t ic  surface. 

Hence, the integration i n  formulas (1.1) and (1 .2 )  i s  

L e t  the equation of this surface be 

In  this case, the cosines of the angles entering formulas (1.1) and 
(1.2)  a re :  

f z 
Ma' M, 
f;r cos(nz) = - - cos(ny) = - cox(nx) = E, 1 

whence dS1 = M, dy dz and formulas (1.1) and (1.2) become: 
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X = $ I\ (8%' + v2 + w2 + 2 u e Y  + Euwf,)dy dz 

SZ 

where Sz i s  the projection of the t r a i l i n g  character is t ic  surface on 
the plane x = constant. Now introduce the potent ia l  cp(x,y,z) of the 
disturbed velocity: 

cpm = u> cpy = v, cpz = w 

Denote by cpo(y,z) the value of the potent ia l  cp on the t r a i l i n g  char- 
a c t e r i s t i c  surface; that is, 

Evidently , 
= v + uf y' 'Po,, = w + uf, 

If these equations and formula (1.3) are used, the expressions 
(1.4) can be reduced t o  the  form 

A s  w a s  t o  be expected according t o  reference 1, the r igh t  s ides  
of the formulas obtained depend only on the value of the potent ia l  on 
the t r a i l i n g  character is t ic  surface and do not depend on the normal 
derivative of the potential .  
ing  on the body a re  convenient a l so  i n  t h a t  the  expressions under the 

The obtained formulas f o r  the forces ac t -  
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in tegra l  signs do not depend on the geometric properties of the  t r a i l i n g  
character is t ic  surface so t h a t  i n  solving the  var ia t ional  problems simple 
equations are obtained f o r  the  poten t ia l  To. 

Now proceed t o  consider the var ia t iona l  problem for a l i f t i n g  wing 
of a rb i t ra ry  planform with supersonic edges. 
no thickness and l ies  i n  the  plane y = 0.  I n  this case, t he  functions 
cp and cqo w i l l  be asymmetrical with respect t o  the plane y = 0. 
Hence, the equation of conservation of mass i s  automatically sa t i s f ied ,  
and i n  the computation of X and Y the  integrat ion can be carr ied 
out only over the  upper half of the region 
t o  the  z-axis; that is ,  

Assume that the  wing has 

S2 symmetrical with respect 

where S i s  the  upper half of the region S2. 

That d is t r ibu t ion  of the  potent ia l  i n  the region S i s  sought f o r  
which, for  a given value of the l i f t  Y, the  drag X a t t a i n s  a minimum 
value. This i s  equivalent t o  seeking the  minimum of the  in t eg ra l  

where q i s  the Lagrange constant determined by the magnitude of the 
l i f t  . 

The potent ia l  cpo must become zero on the  projection of the l i n e  
of intersection of the forward and a f t  charac te r i s t ic  surfaces or1 the  
plane x = constant. 
region S the values of the  potent ia l  cpo are i n i t i a l l y  unknown, and 
here the  natural boundary condition must be obtained. 

On the  remaining par t  of the  boundary of the 

It i s  not d i f f i c u l t  t o  show that the  Euler equation f o r  the func- 
t i ona l  J becomes the Laplace equation: 

yo,y,y + qo,z,z = O (1 .7)  

while the natural boundary condition determines the normal derivative: 
. 
* O  1 1 an = q for y = 0, - - 2 2 , <  z 4- 2 1 

where 2 i s  the  wing span ( f i g .  2 ) .  

F 
N 
a, 
4 
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Thus, the potent ia l  of the disturbed veloci ty  of the wing of mini- 
mum drag on the aft character is t ic  surface sa t i s f i ed  the equation of 
Laplace with mixed boundary conditions. 
problem can be reduced t o  the problem of Mr ich le t  with the a id  of the 
subst i tut ion 'po = $ - qy.) 
further t h a t  the velocity potent ia l  dis t r ibut ion 
sult of solving the  Laplace equation corresponds t o  the flow around 
some wing. l  
a lower estimate f o r  the drag of wings of minimum drag, since i n  formu- 
la t ing  the var ia t ional  problem with respect t o  the potent ia l  'po, addi- 
t iona l  conditions, besides a given l i f t  force, w e r e  not imposed. 

( In  the given case the mixed 

S t r i c t ly  speaking, it i s  necessary t o  show 
obtained as a re- 

In any case, 'po satisfying conditions (1.7) and (1.8) gives 

It wil l  be shown now with the aid of an example of wings of quad- 
rilateral planform that this estimate differs by an insignif icant  amount 
from the drag of plane wings. 
drag w i l l  not be considered. 

Hence, the shape of wings of minimum 

It should be remarked that condition (1.7)  f o r  the potent ia l  of 
the  disturbed velocity of the wing of minimum drag may be obtained on 
the basis of the  work of Jones (ref. 3) .  
that the combined flow around a wing of minimum drag possesses the  fo l -  
lowing properties: the pressure on the surface of the  wing i s  equal t o  
zero and the down-wash is  constant, that is, on the surface of t he  wing 

Jones obtained the result 

where 
equation 

cpk i s  the potent ia l  of the combined flow satisfying the wave 

2 -' 'k,x,x + cpk,y,y + %,z,z = O 

It i s  not d i f f i c u l t  t o  see that the Cauchy problem exis t s  f o r  the 
derivative &(%/ax satisfying the wave equation f o r  the conditions 

a [%] = 0 on the s u f a c e  of the wing %ax 
If the uniqueness of the solution of the Cauchy problem is  assumed, 

then within the en t i re  region bounded by the forward and a f t  character- 
i s t i c  surfaces of the wing, 

%/ax = 0 
(%Y,Y + %,z,z = 0 

or 

'If the forwar& and a f t  
a continuous normal ( i n  this 
i s  evident. 

characterist ic surfaces of the wing have 
case the wing has a convex planform), this 
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From this ,  equations ( 1 . 7 )  and (1.8) f o r  cpo follow d i rec t ly .  
Conditions ( 1 . 7 )  and (1.8) permit constructing the formula f o r  the drag 
of minimum-drag wings. 
equations ( 1 . 7 )  and (1.8) give 

Integrating (1.6) by parts and making use of 

2/2 1 / 2  

'Po b, y = 2uod)m Il, 'Po dz 
= *, I,, (1.9) 

The nondimensional coordinates and nondimensional po ten t ia l  are 
introduced: 

- Z m 'PO 2=q7J ' P o = q 2 / 2  - Y  
= 112' (1.10) 

The poten t ia l  qo, as i s  not d i f f i c u l t  t o  show, now does not depend 
on the  magnitude of the l i f t  and i s  determined only by the  form of the 
l i n e  of intersect ion of the forward and af t  charac te r i s t ic  surfaces on 
the plane x = constant. I n  the new variables  it follows from equations 
(1.9) that 

(1.11) 
2 

- - - 2 z  q0 d; 
X 2 
y2 - i: 

where 

A , c, = 
1 2  + uzp so 

c =  
c o c o  

y - ucop,so 
2 

So i s  the area of the wing, and A i s  the wing aspect r a t io .  

The last formula shows that the r a t i o  C$/Cx f o r  wings of minimum 
drag, as w e l l  as for plane wings, does not depend on the  magnitude of 
the l i f t .  
another property of t he  disturbed veloci ty  u on the forward and a f t  
character is t ic  surfaces. Since 

By making use of equation (1 .7 )  there can be proven s t i l l  

2 
%Y = v + u f  YJ %Y,Y = v Y + 2"yfy + Uxf Y + ufy,y 

equation ( 1 . 7 )  can be wri t ten as 

wz + vy + P 2 5 + 2u2fz + 2"yfy + U(fy,y + f Z , Z )  = 0 
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2 A t  the same time the wave equation wx + vy - i3 % = 0 holds 
throughout space- Hence, on the t r a i l i ng  character is t ic  surface of the 
wing of minimum drag, 

or 

where 

(1.12) 

%(Y,Z) = U(X,Y,Z) f o r  x = f (Y ,Z)  

By using equation (1-3) f o r  f, it is  not d i f f i c u l t  t o  prove the 
following property of the principal radius of curvature 
ing character is t ic  surface: 

R of the trail- 

Equation (1.12) can then be reduced t o  the form 

This equation shows that the families of l i nes  f = constant and 
uo7/li = constant are orthogonal. 
the family f = constant i s  determined by the equation 

The family of l i nes  orthogonal t o  

which i s  the equation of the bicharacterist ics.  
character is t ic  surface of the wing of minimum drag along a character- 
i s t i c  ray, 

Thw, on the t r a i l i n g  

ug$ = const. (1.13) 

The constant entering t h i s  expression var ies  from one ray t o  the 
next, and it can be determined only a f t e r  solving the Goursat problem. 

On the plane portions of the t r a i l i n g  character is t ic  surface along 
a Characteristic ray, f o r n u  (L.13) assumes the form: ~0 = constant. 
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Formula (1.13) holds a l so  f o r  the leading character is t ic  surface 
because it has been shown that ,  i n  the combined flow i n  the region 
bounded by the leading and t r a i l i n g  character is t ic  surfaces, the pres- 
sure i s  equal t o  zero. 

2. Compute the drag of minimum-drag wings of quadri la teral  planform. 
In  the  preceding section it has been shown that the finding of the po- 
t e n t i a l  of the disturbed velocity i n  the t r a i l i n g  character is t ic  surface 
of a wing of minimum drag reduces t o  the solution of the mixed boundary 
problem for  the equation of Laplace. This problem has i n  principle been 
solved by M. V. Keldish and L. I. Sedov, but the solution of concrete 4 

M 
I 
N 
0, 

problems presents great  formal d i f f i cu l t i e s .  
general more convenient t o  solve this problem not by the analyt ical  
method but by an electrointegrator.  
by the  fact  that f o r  determining the drag it i s  suf f ic ien t  t o  know the 
dis t r ibut ion of cpo along the t r a i l i n g  edge of the wing. 

For this reason, it i s  i n  

These computations are f a c i l i t a t e d  

I n  the case of wings of quadrilateral  planform ( f i g .  3) the projec- 
t ion  of the l i ne  of intersect ion of the leading and t r a i l i n g  character- 
i s t i c  surfaces on the plane x = constant consists of pieces of a c i rc le ,  
parabola, and straight l i n e  and i s  en t i r e ly  determined by the parameters 
ml = P-ltgX1 and m2 = p-ltgxz. 

Since i n  t h i s  case h = 4/(m1 - mZ)p, it follows from formula (1.11) 
that 

(2.1) 
C2 

c, m l  - m2 
p J =  

The r igh t  side of this equation depends only on the parameters 
ml and m2. 

For m l  = -m2 = 1, tha t  is, f o r  a wing of rhomboid planform with 
sonic edges, the region S i s  a semicircle and the potent ia l  To i s  
readi ly  found analytically.  In t h i s  case, 

- 1- r2 l + r 2 + 2 r  cos 0 
l + r 2 - 2 r  cos e cpo = -r s in  8 + (l"2 ) 2fir  

l+r2 s i n  e arc  t g  - s i n  e + - cos e In 

A t  the t r a i l i n g  edge, 

L 
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For this wing, 

For the plane wing of the same planforn, 

P A = -  c2 32 
cx 35r 

that is, i n  the given case the drag of the plane wing is  10 percent 
greater than the drag of the minimum-drag w i n g .  
parameters ml and mz, the c q u t a t i o n  of the potent ia l  was made w i t h  
the a i d  of the EI-11 electrointegrator, constructed according t o  the 
principle of e l ec t r i ca l  mode-. A preliminary comparison of the exact 
solution (e.g., (2.2)) with the solution computed by the electrointe- 
p a t o r  showed that the e r ror  i n  computing by the electrointegrator does 
not exceed 1 percent for f3C;/C,. 

t ia l  Go along the t r a i l l n g  edge of the wings of minimum drag. 

The computations show that f o r  a sonic leading edge the drag of 
minimum-drag w i n g s  may differ considerably (by 12-22 percent) from the 
drag of plane wings of the same planform. However, this f a c t  requires 
careful check since the applicabili ty of the  l i nea r  theory raises some 
doubt in this case. In those cases, however, where the leading edge i s  
essent ia l ly  supersonic and the appl icabi l i ty  of the l inear  theory does 
not raise any doubt, the gain i n  drag reduction that i s  obtained i s  in- 
s ignif icant  (of the order of 1-5 percent) . The computations show that 
not only the curvature of the wing surface but i t s  planform itself have 
a small ef fec t  on the value of the magnitude 
this magnitude for d n g s  of minimum drag are ( i n  the parentheses i s  
given the decrease i n  drag i n  percent i n  comparison with plane wings): 

For other values of the 

Figures 4 and 5 show the results of the computation of the poten- 

PCg/Cx. The values of 

I 

3.70 (3) 

-0.6 

3.74 (1) 

3.73 (2 .5)  

3.80 ( 6 )  

4.04 (1) 
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3. Derive the equation f o r  t he  poten t ia l  of the  disturbed veloci ty  
of a body of minimum drag having a f ixed- t ip  cross section. 

The drag experienced by the body i n  supersonic flow and the  equation of 
conservation of mass will be considered i n  the  form (1.5). 

Consider 
the problem of the minimum-drag wing having a f ixed-t ip  cross section. 1 

We shall seek that d is t r ibu t ion  of po ten t ia l  
S f o r  which the m i n i m u m  drag i s  a t ta ined  f o r  fixed value of 2. It i s  
not d i f f i cu l t  t o  show that t h i s  minimum i s  a t ta ined  for sa t i s fy ing  
the following conditions ( f ig .  6 ) :  

'po i n  t he  region 

! ? >  'po 
@3 
(3, 
4 

o , y , y  + 'po,z,z = -q(fy,y + f Z , d  within the  region S 

On the  projection Z1 of the  t i p  section i n  the plane x = con- 
s t an t  (q i s  a Lagrange mult ipl ier)  

$?Q = - q g  
02 

On the  projection Z 2  
and t r a i l i n g  character is t ic  surfaces on the plane 

of the  l i n e  of intersect ion of the  leading 
x = constant: 

The following function i s  introduced: 

90 * = f + -  
9 (3.1) 

As a resu l t ,  the  mixed boundary problem f o r  the Laplace equation 
i s  also obtained: 

. 
lfy,y + = 0 within the region S 

aq/bm = o on 'tl q = f on 12 

Here, as previously, since the shape of the  extrema1 bodies i s  of no 
in te res t ,  only the drag act ing on these bodies i s  considered. Inte- 
grating by par t s  the  expressions (1.5) f o r  X and f o r  U,2 and making 
use of formulas (3.1) and (3.2)  give 

c 

lFurthermore, there i s  f ixed  e i the r  the  body length, i f  the body 
does not extend beyond the limits of the  Mach cone, o r  i t s  planform i f  
the body has supersonic edges. 

b 
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The integral 3 entering this equation i s  always posit ive and is  
determined only by the shape of the region S. Hence, the following 
estimate f o r  the drag of t he  a rb i t ra ry  body holds: 

I n  the case where the  l i n e  of intersection of the  forward and aft  
characteris-t ic surfaces l ies i n  the plane x = constant, this estimate 
coincides with the  drag of bodies of minimum drag:  

I n  par t icular ,  the bodies of revolution considered i n  the  work of 
A. A. Nikolski (ref. 2) r e f e r  t o  t h i s  case. 

A l l  t ha t  has been said i n  this section applies a l so  t o  bodies 
having cyl indrical  ducts. 

1. Hogan, M. N.: On Bodies of Minimum Drag i n  the Supersonic Flow of a 
G a s .  PMM, vol. =I, 1957, pp. 207-212. 

2. Nikolski, A. A.: On Ducted Bodies of Revolution Having a Minimum 
Internal  Drag i n  a Supersonic Flow. Trudy TsAGI, 1950. 

3. Jones, R.: The Minimum Drag of Thin Wings i n  Fr ic t ionless  Flaw. 
Jour. Aero. Sci., vol. 18, no. 2, 1951, pp. 78-81. 

Translated by S. R e i s s  
National Aeronautics and 
Space Administration 
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F i g u r e  1. 

F i g u r e  3.  

F i g u r e  2 .  
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Figure 5. 

Figure 6. 
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